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Executive Summary   
This document describes the machine learning models and data fusion techniques 

included in EIFFEL tools for spatial augmentation of Copernicus datasets and developed 
during the first 18 months of the project. These tools will be used to provide spatially 
augmented datasets in the service of EIFFEL pilot CC adaptation and mitigation applications. 
Five individual spatial augmentation tools will be developed: (i) Sentinel 2 super resolution to 
increase the spatial resolution of the coarser bands of Sentinel 2 to the resolution of the finer 
bands. (ii) Thermal Sharpening of Sentinel 3 SLSTR using Sentinel 2 Data. (iii) Spatio-temporal 
fusion of Sentinel 2 and Sentinel 3 OLCI and SYNERGY data to create data with fine spatial 
resolution and high temporal resolution. (iv) Sentinel-3 OLCI and SYNERGY data super 
resolution and (v) fusion of Sentinel 5p data with Sentinel 2, proxy and in-situ data if available. 
During the first 18 months of the project, two of the five spatial augmentation tools have 
been developed: (i) the Sentinel 2 super resolution and (ii) the thermal sharpening of Sentinel 
3 SLSTR with Sentinel 2 data tool. Section 2.1 describes the developed Sentinel 2 super 
resolution tool. A detailed review of existing super resolution methods is included, and an 
explanation of the technical choices made during the development phase. In Section 2.2, the 
implementation of the thermal sharpening tool for augmenting the spatial resolution of 
Sentinel 3 SLSTR data is explained. Additionally, samples of the augmented datasets provided 
to Pilot users are demonstrated and their evaluation results are also presented. The 
developed components are going to be further improved based on the feedback obtained 
during pilot activities.  
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1  Introduction 
This document describes in detail the ML models and data fusion techniques included in 

EIFFEL tools for spatial augmentation of Copernicus datasets and developed during the first 
18 months of the project. The goal is to explain each developed component of the spatial 
augmentation tools and to document the technical choices made during the development 
phase. These tools will be used to provide spatially augmented datasets in the service of 
EIFFEL pilot applications. Feedback will be obtained during pilot activities, upon which the 
components will be further improved.  
 

1.1  Context 

1.1.1  Objectives 

The deliverable report 4.2 contributes to 2 of 5 EIFFEL project objectives. The input 
provided is based on the functional and non-functional requirements defined in the D2.2, 
which has been the detailed outline of specifications for the CC applications per Pilot study 
(Figure 1) and the GEOSS tools implementations. 

 

Figure 1: EIFFEL PILOT studies in the European Union. 
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The Grant Agreement1 lists five project objectives (O1-O5, below), of which two are indirectly 
linked to the findings published in this report due to their relevance for T4.2: 

1. (O2) EIFFEL will leverage techniques of Explainable AI to develop tangible indicators 
for CC impacts; it will also make use of super resolution, data fusion and stochastic 
modelling techniques to generate spatially and temporally explicit information from 
the untapped pool of GEOSS. 

2. (O5) EIFFEL will develop, using co-creation (O4), a set of CC adaptation and mitigation 
applications in different and quite diverse GEO SBAs, to demonstrate the project 
innovations: PILOT1/P1-Water/Land Management, PILOT2/P2-Sustainable 
Agriculture, PILOT3/P3-Transport Infrastructure, PILOT4/P4-Sustainable Urban 
Development, PILOT5/P5-Disaster Resilience. 

 
The goal of T4.2 is to establish a ML-based framework and algorithms to augment the spatial 
resolution of Copernicus data beyond the capabilities of the original imaging systems. The 
spatially augmented data will be used as input to EIFFEL pilot CC adaptation and mitigation 
applications.    

1.1.2  Work plan 

This report, Deliverable 4.2, corresponds to T4.2: Augmenting spatial resolution of CC 
datasets using super resolution and data fusion (M3-M30) (WP4). It is part of WP4: 
Improving temporal, spatial resolution and data quality of CC-related datasets. 

The spatial augmentation tools presented in D4.2 are based on D2.2 Report on EIFFEL 
specifications, which defines the functional and non-functional system requirements and 
specifications for both the GEOSS EIFFEL tools and CC applications2 and D2.3 EIFFEL System 
Architecture Report which defines the spatial augmentation tools to be developed.   

The results presented in D4.2 play an important role in the WPs that are directly related 
to the use of the implemented tools. Results will be used in WP5: Development of the EIFFEL 
CC applications based on GEOSS as well as during WP7: EIFFEL pilot demonstrations and 
impact assessment3.  

 

1.1.3  Milestones 

D4.2 is linked to MS8: 
 

• MS8: Alpha versions of D4.1-D4.3 related components. Means of verification: 
Alpha versions of the tools in project repository and ready for internal testing  

1.1.4  Deliverables 

D4.2. is based on the input of T2.2 (Lead beneficiary: DRAXIS) and is strongly correlated to 
all the forthcoming deliverables of WP3, WP4, WP54, WP6 and WP75. 

 

 
1 Grant Agreement No 101003518, Part B, p. 5 
2 Grant Agreement No 101003518, ANNEX 1, p. 16 
3 Grant Agreement No 101003518, ANNEX 1, p. 33 
4 Grant Agreement No 101003518, ANNEX 1, pp. 26-29 
5 Grant Agreement No 101003518, ANNEX 1, pp. 33-36 
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1.2  Intended Readership and Document Structure 

The dissemination level of this report is public. It is specifically intended for all the 
partners and especially the WP leaders of all WPs as it relates to both GEOSS EIFFEL Tools 
and EIFFEL CC Applications.  

The section following the introduction describes in detail the following tools and 
components developed during the first 18 months of the project: 

 
1. Sentinel 2 Super Resolution (Section 2.1) 
2. Thermal Sharpening of Sentinel 3 SLSTR using Sentinel 2 Data (Section 2.2) 

 
The progress of the remaining tools to be developed and the future work to be done are 

presented in Section 3.   
 

2  EIFFEL Toolbox for Augmenting Spatial Resolution of CC 
Datasets 
As described in WP46, the goal of T4.2 is to establish a ML-based framework and 

algorithms, that aim at enhancing the spatial resolution of Copernicus data beyond the 
capabilities of the original imaging systems. The framework will ensure Copernicus cross-
platform exploitation, leveraging the inherent characteristics of the Sentinel data and SR 
modelling, including Deep Neural Network based architectures and techniques, towards 
enhancing the spatial characteristics of the observed properties in the context of CC 
applications. In particular, the spatial resolution of the coarser bands of Sentinel 2 (used by 
all pilots, P1-P5) will be increased to the resolution of the finer bands (i.e. from 60m & 20m 
to 10m), whilst at the same time preserving the integrity of spectral resolution. SR techniques 
will also be applied to Sentinel 3 data (used by P1, P3, P5) aiming to sharpen low resolution 
observations (i.e. from Sea and Land Surface Temperature Radiometer - SLSTR), using high 
resolution observations from Sentinel 2 satellites, towards improved monitoring of crucial 
parameters focusing on the interaction between the ground and the atmosphere. 
Additionally, another facet of this task involves the application of data fusion techniques 
enabling the combination of data from different sources (e.g. Sentinel with in-situ datasets) 
in the same processing cycle. Multi-sensor fusion shall predominantly involve the utilisation 
of in-situ data, that usually are point-based but of high accuracy, aiming to improve spatial 
characteristics of the observed parameters whilst enabling large scale mapping. ML models 
will be employed to upscale CC-related properties and transform them into regional or 
national maps. The employed ML models will be formulated as multiple-layer models to learn 
a representation of input/output data with abstractions from lower to higher levels. The 
overall process will include the semantic combination and assignment of in-situ 
measurements to EO data and products (i.e. Sentinel 5p, CAMS) as well as the 
characterisation of areas, from which related in-situ information may not be available.  

Based on the above-mentioned goals and objectives and the user requirements specified 
in D2.2, five different spatial augmentation tools have been defined in D2.3 to fulfil the user 
requirements specified in D2.2. The first component is concerned with a DL-based SR tool for 

 
6 Grant Agreement No 101003518, ANNEX 1, pp. 23-25 
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enhancing the spatial resolution of the coarser bands of Sentinel 2 to the resolution of its finer 
bands. The second component deals with a DL-based SR tool for augmenting the spatial 
resolution of Sentinel 3 OLCI and SYNERGY data through training with Sentinel 2 data. The 
third component is concerned with the spatio-temporal fusion of Sentinel 2 and Sentinel 3 
OLCI and SYNERGY data to create synthetic data that simultaneously have the finer spatial 
resolution of Sentinel 2 and the temporal resolution of Sentinel 3. The last two components 
are involved with enhancing the spatial resolution of Sentinel 3 SLSTR and Sentinel 5p data by 
fusing them with Sentinel 2 images, proxy and in-situ data, if available.  

During the first 18 months of the project, two of the five spatial augmentation tools have 
been developed: (i) the Sentinel 2 SR and (ii) the thermal sharpening of Sentinel 3 SLSTR with 
Sentinel 2 data tool. For a better interpretation of the developed components, a detailed 
description of each component is provided below. 

   

2.1  Sentinel 2 Super Resolution 

Sentinel 2 satellites carry an optical payload with visible, near-infrared and shortwave 
infrared sensors comprising 13 spectral bands: 4 bands at 10 m, 6 bands at 20 m and 3 bands 
at 60 m spatial resolution. Reasons for recording at varying spatial resolution include storage 
and transmission bandwidth restrictions, improved signal-to-noise ratio in some bands 
through larger pixels and bands designed for specific purposes that do not require high spatial 
resolution (e.g. atmospheric correction). However, spatial data analysis requires all the 
available bands to have a common and highest available spatial resolution to extract more 
detailed and accurate information. Given the wide range of CC-related applications that 
Sentinel 2 data can support, the first tool provided by Task 4.2 is responsible for increasing 
the spatial resolution of the coarser bands (i.e. 20 m and 60 m) to the target resolution of the 
finer bands (i.e. 10 m). Next follows a review of state-of-the-art methods for improving the 
spatial resolution of Sentinel 2 coarser bands concluding with the approach that was 
developed and a detailed description of the methodology, the presentation and validation of 
results.  

 

2.1.1  Introduction 

Sentinel 2 bands can be downsampled to 10 m resolution with simple interpolation 
techniques, like bicubic and bilinear interpolation. However, these methods return blurry 
images with no additional high-resolution information [1]. More sophisticated methods try to 
augment the coarser bands by inserting as much as possible of the spatial detail retrieved 
from finer resolution bands. These methods can be classified into three types: (1) 
pansharpening, (2) model-based, and (3) ML/DL approaches.  

In pansharpening methods, a multispectral image of high spectral resolution is fused with 
a panchromatic image of higher spatial resolution to generate a synthetic image which has 
the same spatial resolution as the panchromatic image and the same spectral resolution as 
the original multispectral image. These methods require the availability of a high spatial 
resolution panchromatic image that has significant spectral overlap with the spectral bands 
of the coarse multispectral image. However, there are no available panchromatic bands that 
cover most of the Sentinel 2 sensor’s spectral range. A widely used assumption in 
pansharpening is that a linear combination of bands gives an approximation to the 
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panchromatic image. Several works explored this intermediate solution to increase the spatial 
resolution of Sentinel 2’s 20 m bands up to 10 m by using heuristics to select or synthesize a 
“synthetic panchromatic” image from the 10 m bands. For instance, Vaiopoulos and 
Karantzalos [2] evaluated different pansharpening algorithms to enhance the spatial 
resolution of the 20 m visible near-infrared (VNIR) and short-wave infrared (SWIR) bands of 
Sentinel 2 by using fine information provided by the 10 m bands or synthetic panchromatic 
images created from combinations of the 10 m bands. Similarly, Park et al. [3] optimised the 
synthesis of simulated panchromatic images from the 10 m bands of Sentinel 2 to improve 
pansharpening results. However, the performance of pansharpening methods in the case of 
Sentinel 2 can be challenging given the important requirement of real or simulated PAN 
image. It is difficult to be obtained because Sentinel 2 data include more than one bands at 
the highest resolution, which also do not spectrally overlap with the lower resolution ones 
[4].  

Model-based methods address the spatial augmentation problem by inverting an explicit 
observation model, which describes the blurring, spatial resolution degradation and noise 
processes that generated the coarse resolution image. Considering that the inverse model is 
ill-posed, since the number of unknown variables is much greater than the number of 
observed variables, an explicit regulariser (i.e., image prior) is required. Indicatively, Lanaras 
et al. [1] introduced a model-based super resolution approach for Sentinel 2 termed as 
SupReME (SUPer-REsolution for multispectral Multiresolution Estimation). In this approach, 
an edge-reserving regulariser is included which extracts the discontinuities from the fine 
resolution bands and transfers them to other bands. The correlation of the spectral bands is 
also exploited to reduce the dimensionality of the problem. Paris et al. [5] extended the 
SupReME approach by employing a patch-based regularisation that promotes self-similarity 
of images. Ulfarsson et al. [6] also extended SupReME by performing dimensionality reduction 
during optimisation and by using cyclic decent on a manifold. Brodu et al. [7] developed a 
two-stage method that at the first stage extracts the band-dependent spectral information 
that is common to all bands termed as “geometry of scene elements”. Then applies this model 
to the coarser resolution bands such that they are consistent with the scene elements while 
preserving their reflectance using spectral unmixing techniques. 

The third type of ML/DL-based methods includes SR techniques which directly learn the 
relation between coarse and fine spatial resolution images by training from data, instead of 
defining explicitly blurring, spatial resolution degradation and noise processes through a 
regulariser. CNNs are one of the most important paradigms in SR due to their potential to 
extract high-level features from images. As a result, several SR methods based on CNNs have 
been presented and tested. In the reference approach of Dong et al. [8] (Super-Resolution 
Convolutional Neural Network - SRCNN), a three-layer CNN is utilised to learn the mapping 
between coarse images, which are initially downscaled to the target resolution by 
interpolation, and their ground-truth fine resolution counterparts. Kim et al. [9], [10] 
developed two deep convolutional networks for SR enhancement. The first [9] was the Deeply 
Recursive Convolutional Network for Image Super Resolution (DRSN), which uses recursive or 
shared weights to reduce model parameters in a deep 20-layer CNN. The second [10] (Very 
Deep Super Resolution = VDSR) is also a deep CNN which includes a final residual connection 
that adds the interpolated input image to the output, and therefore the network needs only 
to learn the fine details not included in the interpolated input image, instead of regenerating 
the whole image.  
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The residual (or skip) connections in CNNs were introduced by He et al. [11] for image 
object recognition. These connections bypass portions of the network and are added again 
later, such that skipped layers only need to estimate the residual with respect to their input 
state. In this way, the average effective path length through the network is reduced, which 
alleviates the vanishing gradient problem and greatly accelerates the learning. Mao et al. [12] 
employed the ResNet architecture in SR without further modification. However, applying 
ResNet architecture directly to low level vision problems like SR can be suboptimal concerning 
the fact that the original ResNet was proposed to solve higher-level computer vision problems 
like image classification and detection. To address this problem, Lim et al. [13] developed the 
enhanced deep residual network (EDSR) by removing all BatchNorm layers while stabilising 
the training process using a residual scaling layer after the last convolution of each residual 
block. With these modifications, EDRS has been shown to provide some performance 
advantages with respect to SRRN when considering moderate scaling ratios [14].  

All the above-mentioned works have in common that they need to predict images of fine 
spatial resolution only based on previously seen fine resolution images. However, the 
problem of super-resolving the coarser bands of Sentinel 2 to the resolution of the finer bands 
deviates from the classic SR problem. In this case, we have access to the fine resolution bands 
during training and prediction and thus, we can transfer only the fine resolution information 
to the coarse resolution bands instead of generating the whole fine resolution image. Several 
DL-based methods have been proposed for this particular Sentinel 2 SR problem.  

Lanaras et al. [15] were inspired by EDRS network and proposed the first CNN model to 
effectively super resolve all Sentinel 2 bands (i.e. 20m and 60m) to 10 m spatial resolution. 
The network was trained for two different scale factors (i.e. 2x and 6x) on a random selection 
of 60 Sentinel 2 images. Gargiulo [16] also presented a CNN architecture specially designed 
for super resolving 20 m Sentinel 2 bands to 10 m by introducing additional convolutional 
layers and a revisited loss function. A Deep Residual Network that fuses both fine and coarse 
spatial resolution bands was proposed by Palsson et al. [17]. Connection convolutional neural 
network (S2 SSC) extends on this but uses an unsupervised single image learning (zero-shot) 
approach in which the training and testing are performed on the same image [18]. The 
Remote Sensing Very Deep Super-Resolution (RSVDSR) [19] network retrains previously 
developed deep convolutional networks to work with Sentinel 2 data with promising results. 
Sentinel 2 Parallel Residual Network (SPRNet) [20] trained two sets of parallel residual 
networks and obtained good spatial fidelity and spectral preservation. The approach of Zhang 
et al [21] was inspired by DSen2 and developed two large neural networks for deployment 
and training on high performance computing clusters, one for 20 m bands and one for 60 m 
bands.  

The existing DL-based Sentinel 2 SR methods are supervised and the required training 
dataset must include both the coarse resolution input and the ground-truth fine resolution 
output. However, 10 m resolution reference images are not available for the 20 m and 60 m 
Sentinel 2 bands. The lack of fine resolution reference images during training is addressed by 
reducing the resolution of images before training, by the scaling ratio between the coarse and 
fine bands. This strategy is inspired by Wald’s Protocol [22], which assumes that the spectral 
correlation of an image is self-similar over a limited range of scales. Therefore, downsampling 
from 20 m to 10 m by inserting high resolution details across spectral bands can be achieved 
from images resampled at 40 m and 20 m, and similarly for the 60 m to 10 m case by 
resampling at 360 m and 60 m. Under this assumption, an unlimited amount of training data 
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can be created by synthetically resampling original Sentinel 2 images by the desired factor 
and using them as input to generate the original data as output.  

Given the ability to create training datasets without the need for high-resolution 
reference images, two different training approaches have been established to train Sentinel 
2 DL-based SR models. The first approach is to train the neural network with an extensive 
training dataset with global coverage such that it can generalize well across different areas 
and can super-resolve arbitrary Sentinel 2 images without the need for retraining. In the 
second approach. models are trained and tested on the same image and thus the training is 
quicker than the first approach. This strategy is used when a single specific image is needed 
to be super-resolved. However, the network must be retrained each time a different Sentinel 
2 image must be super-resolved. Concerning that CC mitigation and adaptation applications 
will be applied to various areas with different climatic conditions and land cover types, the 
first training approach with the extensive training dataset is considered more efficient 
because it is trained once and can super-resolve arbitrary Sentinel 2 images without further 
retraining. 

The performance of DL-based SR methods can be sensitive to important training 
hyperparameters. Palsson et al. [17] trained a deep residual network with a single image 
training dataset and found that the optimal number of training patches depends on the 
complexity of the single image used for training, while a large number of epochs does not 
improve the performance because the network converges quickly. The network also appears 
insensitive to the number of residual blocks and patch size. Unfortunately, a similar 
performance evaluation of SR networks trained with large training datasets is missing from 
the literature. To fill this gap, three characteristic deep residual network architectures were 
trained with a single large training dataset to find the most efficient. To achieve the optimum 
performance, we also focused on the effects of various training hyperparameters (number 
and size of patches, number of training epochs, batch size and number of residual blocks) on 
the quantitative and qualitative performance of the SR models. The most efficient and fine-
tuned architecture was used to create the final Sentinel 2 SR tool.  

Summarizing our contributions, we have developed a large training dataset with a global 
distribution of samples to compare the performance of several deep residual network 
architectures and their hyperparameters and to select the most efficient which has global 
applicability for Sentinel 2 Level 2A data without retraining. The developed Sentinel 2 SR tool 
will provide Sentinel 2 images where all the included bands are at the highest available spatial 
resolution of 10 m.  

 

2.1.2  Methodology 

2.1.2.1  Dataset Creation 

A large training dataset of Sentinel 2 data was considered mandatory to train a network 
that can super-resolve random Sentinel 2 images without retraining. Atmospherically 
corrected Sentinel 2 Level 2A tiles from 45 randomly selected locations were downloaded 
from the Copernicus Services Data Hub, aiming for wide distribution on the globe and for 
covering a variety of climate zones and land-cover types. An additional dataset of 5 Sentinel 
2 Level 2A tiles located in possible areas of interest for the Pilots was also collected and used 
for testing. To simplify training and testing, we chose only images with low cloud cover and 
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with no undefined (“black background”) pixels. The locations of the training and test images 
are illustrated in Figure 2. Out of these images, 80% are used for training and the remaining 
10% serve as validation set. The filenames of the Sentinel 2 images included in the training, 
validation and test datasets are defined in Appendix 1.  
 

 
Figure 2 Locations of Sentinel 2 tiles selected for training and testing 

 
CNNs are fully supervised and need a lot of training data including low resolution input 

images and their corresponding true high-resolution outputs. However, a central issue in our 
approach is how to construct the training, validation and testing datasets, given that ground 
truth images with 10m resolution are not available for the 20m and 60m bands. Since there 
is no high-resolution reference image available, the images need to be degraded in resolution 
by the desired scale factor to be used as input data and the original observed images are used 
as reference output. This approach is the most widely used method for dataset creation in 
DL-based Sentinel 2 SR approaches. And it is based on Wald’s protocol [22] which assumes 
that the spectral correlation of an image is self-similar over a limited range of scales. 

For better understanding of the dataset creation process, we use the following 

notation:  the observed fine bands are denoted by  𝑌 ∈  𝑅𝑑1× 𝑑2 × 𝐿1  and the observed coarse 

bands are denoted by 𝑋 ∈  𝑅
𝑑1
𝑠

 ×
𝑑2
𝑠

 × 𝐿2, where 𝑑1 × 𝑑2 is the dimension of the fine resolution 
bands, 𝐿1 is the number of fine resolution bands,  𝐿2 is the number of coarse resolution bands 
and 𝑠 is the scale ratio between the fine and coarse resolution bands. Downsampling by the 
factor 𝑠 is denoted by 𝐷 and upsampling by a factor 𝑠 is denote by 𝑈. Finally, we denote the 
spatially degraded fine and coarse bands by 𝐷𝑇 and 𝐷𝑋, respectively, where the operator 𝐷 
degrades their spatial dimensions by the factor 𝑠. Since 𝐷𝑋 is smaller than 𝐷𝑌 by a factor of 
𝑠 along each spatial dimension, it needs to be interpolated to the same size as 𝐷𝑌 to be added 
elementwise with the fine information extracted and compared with the 𝐷𝑌 during training. 

We denote the interpolated degraded coarse bands by 𝑋𝐷  ∈  𝑅
𝑑1
𝑠

 × 
𝑑2
𝑠

 × 𝐿2 = 𝑈𝐷𝑋  and the 

degraded fine bands by 𝑌𝐷  ∈  𝑅
𝑑1
𝑠

 × 
𝑑2
𝑠

 × 𝐿2 = 𝐷𝑌 . Now 𝑋𝐷, 𝑌𝐷 and 𝑋 have the same spatial 
dimensions.  

In practice, to generate training data with the desired scale ratios of 2 and 6, we 
downsampled the original Sentinel 2 data by first blurring them with a Gaussian filter of 
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standard deviation σ = 1/s pixels. Then, we downsampled by averaging over s×s windows, 
with s = 2 and s = 6, respectively. The process of generating the training data is illustrated in 
Figure 3. In this way, we obtained two datasets for training, validation and testing (Table 1). 
The first dataset consists of fine resolution images at 20m and coarse resolution images of 40 
m, created by downsampling the original 10m and 20m bands by a factor of 2. It served to 
train a network for 2× super-resolution. The second one consists of images with 60m, 120m 
and 360m resolution, downsampled from the original 10m, 20m and 60m data. This dataset 
was used to learn a network for 6× super-resolution. We note that, due to unavailability of 
10m ground truth, quantitative analysis of the results was also conducted at the reduced 
resolutions. 
 

 
Figure 3. The process workflow applied for simulating the data for training and testing 

Table 1. Spatial resolution of original data and training datasets according to the scale factor 

Scale 
Factor 

Original Data Training Dataset 

2 4 bands [B2,B3,B4,B8] (10 m), 
6 bands [B5,B6,B7,B8A,B12] 
(20 m) 

Input: 4 bands [B2,B3,B4,B8] (20 m), 6 bands [B5,B6,B7,B8A,B12] (40 m) 
Output: 4 bands [B2,B3,B4,B8] (20 m), 6 bands [B5,B6,B7,B8A,B12] (20 m) 

6 4 bands [B2,B3,B4,B8] (10 m), 
6 bands [B5,B6,B7,B8A,B12] 
(20 m),  
2 bands [B1, B9] (60 m) 

Input: 4 bands B2,B3,B4,B8] (60 m), 6 bands [B5,B6,B7,B8A,B12]  (120 m), 
2 bands [B1, B9] (360 m) 
Output: 4 bands B2,B3,B4,B8] (60 m), 6 bands [B5,B6,B7,B8A,B12]  (60 m), 
2 bands [B1, B9] (60 m) 

 
To make the training of the network computationally feasible, each input image was 

divided into many small patches of suitable size. Thus, the input to the network is patches of 

the stacked degraded bands, i.e., patches of [XD, YD] ∈  R
d1
r

 × 
d2
r

 ×(L1+L2), denoted by 

[Xi
D, Yi

D] ∈  Rp × p ×(L1+L2), i = 1, … , M, where M is the number of patches and p is the patch-

size. The target patches during training come from X and are denoted by Xi ∈

 Rp × p × (L1+ L2), i = 1, … , M. As all the bands have the same size, the ith patch covers the same 
part of the scene for all the images. In practice, we sampled 1000 random patches per training 
image. Three different training sets of 45000 patches each were created with size of 32x32, 
64x64 and 128x128 pixels to define the optimum patch size during hyperparameter tuning.  

The processing of the dataset was performed in Python. The Gaussian blurring was 
performed with the gaussian filter included in the multidimensional image processing 
package, scipy.ndimage. The downscaling by average was performed with the 
skimage.measure.block_reduce function. Finally, the upscaling of the coarse image patches 
to fit the dimensions of the fine image patches was implemented with the 
skimage.transform.resize function, which performs spline interpolation with default order of 
1. Finally, the tiling into patches was performed with the gdal.Translate function. 

2.1.2.2  Convolutional Neural Network Architectures 
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Finding the right size and capacity for a CNN is largely an empirical choice. In the context 
of Sentinel 2 SR, three different deep residual network architectures have been proposed: (i) 
DSen2 architecture proposed by Lanaras et al. [15], (ii) ResNet proposed by Palsson et al. [17] 
and (iii) SPRNet proposed by Wu et al. [20]. The three neural network architectures are 
demonstrated in Figure 4. 

 

 
 

 

 
Figure 4 Sentinel 2 Super-Resolution Neural network architectures 

All three networks were trained with the same training dataset of 45 images which 
were split into 45000 patches for 30 epochs with the same hyperparameter configuration to 
select the one that achieves the fastest convergence during training and the best evaluation 
results. Each network was implemented in the Keras framework with Tensorflow as the 
backend. The mini-batch size for SGD was set to 128 patches. The initial learning rate is 10-4 
and it is reduced by a factor of 2 whenever the validation loss does not decrease for 5 
consecutive epochs. For numerical stability, the raw reflectance values of each image patch 
were divided by 2000 before training. The network weights were initialized to small random 
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values with the He uniform method [23] and optimised with the stochastic gradient descent. 
In specific, we used the Adam variant of SGD [24] with Nesterov momentum. 

Various evaluation metrics were computed during validation at the end of each training 
epoch and during the evaluation with the test images: MAE, Peak Signal-Noise Ratio (PSNR), 
spectral angle mapper (SAM), ERGAS, universal image quality index (UIQ). According to the 
evaluation results (Table 2), the SPRNet architecture achieves the best results but within a 
long training time. The DSen2 architecture was selected since it achieves the second-best 
results and requires a shorter training time.  

   
Table 2. Evaluation results for three different SR neural network architectures for super-
resolving 20 m bands (ERGAS - relative dimensionless global error, MAE – mean absolute 

error, PSNR – peak signal to noise ratio, SAM – spectral angle mapper, UIQ – universal image 
quality) 

 ERGAS MAE PSNR SAM SRE UIQ 
Time per 

Epoch 
Epochs Training 

Duration 

SPRNet 0.991924 0.013503 33.457920 0.937818 40.766830 0.999572 1 h 49 min 30 54 h 30 min 

ResNet 1.376152 0.018745 30.612630 1.301025 39.407833 0.999177 26 min 30 13 h 

DSen2 1.130744 0.015817 32.318603 1.064090 39.190921 0.999445 45 min 30 22 h 30 min 

 
To achieve the optimum performance, we also focused on the effects of various training 

hyperparameters (patch size, batch size, and loss function) on the quantitative and qualitative 
performance of the SR models. Figure 5 shows the spectral angle mapper values achieved 
with 4 different batch sizes while the other configuration settings were the same (Patch size 
= 32, Loss function = Mean Absolute Error (MAE), Residual blocks = 6, Optimizer = ADAM with 
Nesterov momentum, learning rate = 10-4(reduced by a factor of 2 when stable for 5 epochs), 
epochs = 50). Additionally, Figures 6 and 7 show the spectral angle mapper values achieved 
when the network was trained with three training datasets of different patch sizes (i.e., 32, 
64, 128 pixels) and loss functions (i.e., MAE, MSE, ERGAS), respectively.  

The optimum configuration setting included a training dataset which was split into 
patches of 32 x 32 pixels size for 2x scaling ratio (i.e. SR of 20 m to 10 m) and 64 pixels size of 
6x scaling ratio (i.e. SR of 60 m to 10 m). The network was trained on batches of 32 tiles with 
mean absolute error as the loss function and the ADAM with Nesterov momentum as an 
optimizer. The learning rate was 10-4, which was reduced by a factor of 2 when stable for 5 
epochs. The model was trained with the optimum configuration for 100 epochs. Figure 8 and 
Figure 9 depict the training curves while training with the optimum configurations for super 
resolving for scale factors of 2x and 6x. Table 3 includes the evaluation results of the fined 
tuned neural network architectures for super-resolving 20 m and 60 m bands to the 10 m 
target resolution. 
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Figure 5. Spectral angle mapper values achieved with different batch sizes 

 

 
Figure 6. Spectral angle mapper values achieved with different patch sizes 

 

 
Figure 7. Spectral angle mapper values achieved with different loss functions 
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Figure 8. Training curve of DSen2 for scaling ratio 2 with the optimum configuration 

 
Figure 9. Training curve of DSen2 for scaling ratio 6 with the optimum configuration 

 
Table 3. Evaluation results for the fine-tuned SR neural network architecture for super-

resolving 20 m bands (2x) and 60 m bands (6x) 

Scaling Ratio MAE PSNR SAM ERGAS UIQ 

2x 0.0121 34.7523 1.3308 1.4961 0.9991 

6x 0.0159 32.2598 1.9371 1.4763 0.9986 

 

2.1.3  Sentinel 2 SR Tool 

The two trained neural networks for downscaling 20 m and 60 m bands to 10 m resolution 
are the basis of the Sentinel 2 SR tool, which is implemented with Python. The tool can super-
resolve entire Sentinel 2 Level 2A images in SAFE format. The under-processing image is read 
partially with the GDAL library to reduce the memory requirements. Each accessed part of the 
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Sentinel 2 image (both 20 m and 60 m bands) is super resolved to 10 m resolution and stored 
in the output file which is defined by the name of the original Sentinel 2 name and the initial 
‘SR_’ at the front of the filename. The final super resolved image includes 12 bands with 10 
m spatial resolution. Next, super resolved Sentinel 2 images acquired over the 5 different 
Pilot’s AOI are presented as a proof of concept.   

 

 
Figure 10. Top: (a) Input Sentinel 2 bands at 10 m (RGB Bands 4,3,2), (b) 20 m (RGB Bands 
5,6,7) and (c) 60 m (RGB Bands 1,9) spatial resolution, Bottom: Super-resolved bands at 10 m 
spatial resolution (d) (RGB Bands 5,6,7) and (e) (RGB Bands 1,9). (Location: Area around Aa of 
Weerijs, Netherlands - Pilot 1) 
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Figure 11. Top: (a) Input Sentinel 2 bands at 10 m (RGB Bands 4,3,2), (b) 20 m (RGB Bands 
5,6,7) and (c) 60 m (RGB Bands 1,9) spatial resolution, Bottom: Super-resolved bands at 10 m 
spatial resolution (d) (RGB Bands 5,6,7) and (e) (RGB Bands 1,9). (Location: Lithuania - Pilot 2) 

 
Figure 12. Top: (a) Input Sentinel 2 bands at 10 m (RGB Bands 4,3,2), (b) 20 m (RGB Bands 
5,6,7) and (c) 60 m (RGB Bands 1,9) spatial resolution, Bottom: Super-resolved bands at 10 m 
spatial resolution (d) (RGB Bands 5,6,7) and (e) (RGB Bands 1,9). (Location: Palma Port, 
Majorca, Spain - Pilot 3) 
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Figure 13. Top: (a) Input Sentinel 2 bands at 10 m (RGB Bands 4,3,2), (b) 20 m (RGB Bands 
5,6,7) and (c) 60 m (RGB Bands 1,9) spatial resolution, Bottom: Super-resolved bands at 10 m 
spatial resolution (d) (RGB Bands 5,6,7) and (e) (RGB Bands 1,9). (Location: Athens, Greece - 
Pilot 4) 

 
Figure 14. Top: (a) Input Sentinel 2 bands at 10 m (RGB Bands 4,3,2), (b) 20 m (RGB Bands 
5,6,7) and (c) 60 m (RGB Bands 1,9) spatial resolution, Bottom: Super-resolved bands at 10 m 
spatial resolution (d) (RGB Bands 5,6,7) and (e) (RGB Bands 1,9). (Location: Finland - Pilot 5) 
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2.2  Thermal Sharpening of Sentinel 3 SLSTR using Sentinel 2 Data  

The Sentinel satellite constellation is designed to provide earth observation data for many 
diverse applications. It can be achieved by acquiring frequent observations from a 
combination of optical, thermal and microwave sensors at various spatial resolutions. 
Thermal infrared (TIR) remote sensing images can be used to estimate the spatial distribution 
of land surface temperature and can be used for wildfire detection, mapping land surface 
energy fluxes and evapotranspiration, monitoring urban heat fluxes and detecting drought. 
For many of these applications, TIR data are required at a relatively fine resolution. However, 
the Sentinel constellation contains only one thermal sensor (Sea and Land Surface 
Temperature Radiometer – SLSTR) with a coarser spatial resolution of 1000 m (on board of 
the Sentinel-3 satellites) than that of shortwave sensors on the same satellite platform and 
high-resolution multispectral sensors on the Sentinel 2 satellites. Therefore, an efficient 
thermal sharpening tool is required to bridge the spatial resolution gap between the currently 
available coarse resolution Sentinel 3 thermal images and the fine Sentinel 2 multispectral 
images. In the following sections, we review several thermal sharpening techniques and select 
the most efficient for the CC adaptation and mitigation applications.  

 

2.2.1  Introduction 

Several techniques have been developed for sharpening coarse spatial resolution TIR 
images with fine spatial resolution shortwave images. The basic assumption of most thermal 
sharpening approaches is that land surface temperature (LST) has a unique relationship to 
shortwave band signals across a given imaging scene. Relationships between LST and spectral 
signals within a scene are determined empirically at the coarse (thermal band) pixel resolution 
and then applied to the fine (shortwave image) pixel resolution to produce sharpened thermal 
band imagery. Most of these techniques consist of two general steps. In the first step, a 
relationship is derived between the TIR data and fine resolution data aggregated to the 
resolution of the TIR data. In the second step, this relationship is applied to fine resolution 
data to obtain TIR observations at the same high resolution. A post-processing step is 
sometimes also included to remove the bias between TIR datasets at the two resolutions.  

A classic thermal  sharpening  technique, TsHARP [25], uses  a  relationship  between  land   
surface temperature (LST) and Normalized Difference Vegetation Index (NDVI) developed 
empirically at the TIR spatial resolution and applied at the NDVI spatial resolution. However, 
several studies [26]–[29] have shown that unique relationships between temperature and 
NDVI may only exist for a limited class of landscapes, with mostly green vegetation and 
homogeneous air and soil conditions. To address this problem, Merlin et al.  [28] developed 
separate LST-NDVI relationships for photosynthetically and non-photosynthetically active 
vegetation cover to sharpen imagery over an irrigated cropland in Mexico. Dominguez et al. 
[26] found that the LST-NDVI relationship was ill-defined over an urban area in Puerto Rico, 
and included albedo as a predictor in their High-resolution Urban Thermal Sharpener (HUTS), 
which yielded smaller Mean Absolute Error (MAE) and higher correlation coefficient 
compared to TsHARP. These refinements to the original TsHARP approach are based also on 
the same conceptual framework. They define the linear relationship between LST and higher-
order products such as albedo, land cover type and emissivity, which are difficult to be applied 
in an automated way to different landscapes. To extend the application of thermal sharpening 
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to more complex conditions, a data mining sharpener (DMS) technique was proposed by Gao 
et al. [30]. The DMS approach builds regression trees between a TIR image and shortwave 
spectral reflectances based on intrinsic sample characteristics. There is no pre-selection of 
which shortwave band combination is important for a particular landscape, but it is 
determined adaptively by the DMS. The method is designed to utilize the full complement of 
TIR and shortwave data collected by a given satellite platform. Therefore, the Sentinel 3 SLSTR 
thermal sharpening tool is based on the DMS approach, given its robustness to be applied to 
various landscapes and conditions without the need for higher order data products.   
 

2.2.2  Methodology 

The implemented DMS approach uses reflectances from the fine resolution Sentinel 2 
bands as independent variables. The reflectance data are aggregated to match the coarse 
Sentinel 3 SLSTR spatial resolution. Then, high-quality land surface temperature and fine 
resolution reflectance sample data are selected from the imagery based on the sub-pixel 
variation in the coarse resolution pixel, which is computed when the Sentinel 2 reflectance 
values are aggregated to Sentinel 3 SLSTR resolution. The extracted samples are used to train 
the thermal-reflectance relationships by using an ensemble decision tree regression method. 
The ensemble decision tree regression is performed both locally (in a moving-window 
fashion) and globally (i.e. to the whole study area). The results are then combined based on 
the residuals computed between the regression outputs and the low-resolution thermal data. 
Finally, residual analysis and bias correction are performed between the regression output 
and the low-resolution thermal data to ensure consistency between the sharpened high-
resolution pixels and their corresponding low-resolution thermal pixel. Figure 15 illustrates 
the implemented processing workflow.  

 

 
Figure 15. Sentinel 3 SLSTR & Sentinel 2 sharpening workflow 
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2.2.3  Thermal sharpening Tool 

In practice, the thermal sharpening tool requires a coarse resolution Sentinel 3 thermal 
image from SLSTR sensor and a fine resolution Sentinel 2 atmospherically corrected (Level 2A) 
image. Both images must be cloud free and temporally close to each other. The Sentinel 2 
data are first super resolved to have all its spectral bands at the finer spatial resolution of 10 
m with the implemented Sentinel 2 SR tool described in Section 2.1. On the other hand, the 
input Sentinel 3 SLSTR data are reprojected onto the projection system of Sentinel 2 data with 
the GDAL Python library. The spatially overlapping part of both images is used for the 
subsequent processing. For the ensemble decision tree regression, the scikit-learn library is 
employed, where each decision-tree is trained with a random subset of the training samples 
drawn with replacement in a method known as Bagging [31]. The final value of the regression 
is an average of the values produced within the ensemble. 

The developed thermal sharpening tool was applied to Sentinel 3 & Sentinel 2 image pairs 
acquired over the 5 different Pilot’s AOIs (Table 4). Table 5 presents the percentage of 
homogeneous samples extracted from each pair and the root mean square error from the 
residual analysis of the fused products with the coarse resolution Sentinel 3 thermal image. 
Figures 16-20 present subsets of the Sentinel 2 and Sentinel 3 image pairs and the predicted 
image from the developed thermal sharpening tool. 

 
Table 4. The test Sentinel 3 – Sentinel 2 image pairs  

Case Area  Datasets 

Pilot 1  Sentinel 2 S2A_MSIL2A_20220420T104631_N0400_R051_T31UFT_20220420T175659 

Sentinel 3 S3A_SL_2_LST____20220420T102858_20220420T103158_20220421T193709_0179_084_222_1980_PS1
_O_NT_004 

Pilot 2  Sentinel 2 S2A_MSIL2A_20220827T093601_N0400_R036_T35ULB_20220827T142655  

Sentinel 3 S3B_SL_2_LST____20220827T090451_20220827T090751_20220827T112211_0179_069_378_1980_PS2
_O_NR_004 

Pilot 3  Sentinel 2 S2B_MSIL2A_20210815T103629_N0301_R008_T31SDD_20210815T134410  

Sentinel 3 S3B_SL_2_LST____20210815T102531_20210815T102831_20210816T221544_0179_056_008_2340_LN2
_O_NT_004 

Pilot 4 Sentinel 2 S2B_MSIL2A_20220525T090559_N0400_R050_T34SGH_20220525T110355  

Sentinel 3 S3A_SL_2_LST____20220525T084630_20220525T084930_20220526T175411_0180_085_335_2340_PS1
_O_NT_004 

Pilot 5  Sentinel 2 S2B_MSIL2A_20220828T095549_N0400_R122_T35WMP_20220828T113542  

Sentinel 3 S3B_SL_2_LST____20220828T101640_20220828T101940_20220829T130617_0179_070_008_1800_PS2
_O_NT_004 

 
Table 5. Evaluation results of the thermal sharpening product  

Case Area Homogeneous samples RMSE 

Pilot 1  40.6 % (4894/12051) 1.85857 

Pilot 2 86.8% (10507/12100) 1.97244 

Pilot 3 63.6% (1337/2101) 1.11956 

Pilot 4 86.4% (5527/6397) 1.88751 

Pilot 5 96.6% (11685/12098) 0.65909 
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Figure 16 Pilot 1 (a) Sentinel 2 super-resolved image (RGB Bands 4,3,2), (b) Sentinel 3 SLSTR 
thermal image, (c) Combined prediction 

 

 

Figure 17 Pilot 2 (a) Sentinel 2 super-resolved image (RGB Bands 4,3,2), (b) Sentinel 3 SLSTR 
thermal image, (c) Combined prediction 

 

 

Figure 18 Pilot 3 (a) Sentinel 2 super-resolved image (RGB Bands 4,3,2), (b) Sentinel 3 SLSTR 
thermal image, (c) Combined prediction 
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Figure 19 Pilot 4 (a) Sentinel 2 super-resolved image (RGB Bands 4,3,2), (b) Sentinel 3 SLSTR 
thermal image, (c) Combined prediction 

 

 

 

Figure 20 Pilot 5 (a) Sentinel 2 super-resolved image (RGB Bands 4,3,2), (b) Sentinel 3 SLSTR 
thermal image, (c) Combined prediction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
D4.2 Analytical framework for improved spatial resolution of CC datasets 

 
 

 

© 2022 EIFFEL v1.0 PAGE 30 of 36 

 
Funded by  
the European 
Union 

 

3  Future Work 
Three tools for spatial augmentation and data fusion are currently under development: (i) 

a DL-based SR tool for augmenting the spatial resolution of Sentinel 3 OLCI and SYNERGY data. 
(ii) A spatio-temporal data fusion of Sentinel 2 and Sentinel 3 OLCI and SYNERGY data to create 
synthetic daily data that have the fine spatial resolution of Sentinel 2. And (iii) tools to 
enhance the spatial resolution of Sentinel 5p data products by fusing them with Sentinel 2 
images, proxy and in-situ data, if available.  

 

3.1  Sentinel 3 Augmentation & Fusion Tools  

The first two components for spatial resolution augmentation and spatio-temporal fusion 
of Sentinel 3 medium spatial resolution (i.e. 300 m) multispectral images are suitable for areas 
that require the frequent acquisition of fine spatial resolution images, which no single sensor 
can achieve. Sentinel 2 satellites carry fine spatial resolution multispectral sensors and can 
revisit the same area every 5 days. Due to cloud and shadow contamination, however, it 
generally requires more than 5 days (e.g. probably several months) to acquire a cloud-free 
Sentinel 2 image for specific areas. On the other hand, Sentinel 3 also comprises a pair of 
satellites that carry the ocean and land color instrument (OLCI), which captures multispectral 
images with a spatial resolution of 300 m and a temporal resolution of 1.4 days. Therefore, 
intersensory schemes are considered to refine the available data products offered by 
Sentinel’s operational chain. Specifically, the two Sentinel 3 OLCI related tools will try to 
spatially enhance Sentinel 3 OLCI products by taking advantage of the higher spatial 
resolution of the Sentinel 2 images and the higher temporal resolution.  

To address these issues, two different tools are going to be implemented and tested for 
enhancing the four similar spectral bands that are acquired by both Sentinel 2 and Sentinel 3 
sensors: (i) a DL-based super resolution for enhancing the Sentinel 3 OLCI spatial resolution, 
where Sentinel 2 fine resolution images are only accessible for training. And (ii) a spatio-
temporal data fusion tool, which aims at creating synthetic images that combine the fine 
spatial resolution of Sentinel 2 imagery and the substantially shorter Sentinel 3 revisit time. 

Effectively exploiting such intersensor synergies raises important challenges in terms of 
operational data availability, sensor alignment and substantial spatial and spectral resolution 
changes, among others [32], [33]. Each pair of Sentinel 2 – Sentinel 3 images must be 
atmospherically corrected, projected to a common coordinate system and co-registered to 
remove important spatial differences between the MSI and OLCI sensors. Concerning that 
atmospherically corrected Sentinel 3 OLCI products are still not available, it is necessary to 
predefine which atmospheric correction algorithm is suitable for each Pilot application. In 
M17, we discussed this issue with Pilot 5 users, which are interested in using Sentinel 3 related 
tools. And we decided to use the Sentinel 3 SYNERGY instead of OLCI products, which include 
atmospherically corrected bands acquired from both OLCI and SLSTR sensors. Therefore, a 
new training dataset with Sentinel 3 SYNERGY and Sentinel 2 image pairs was collected and 
processed to train the Sentinel 3 SR CNNs [8], [32]. Additionally, a spatio-temporal data fusion 
method [33] that can predict both gradual changes and land cover type changes will be 
implemented, which cannot be addressed with most spatiotemporal data fusion methods 
[34], [35]. 
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3.2  Sentinel 5p Augmentation & Fusion Tools 

Spatial resolution augmentation of Sentinel 5p data is of particular interest for Pilot 3 and 
4 applications. In Pilot 3, the measurements from a dense network of air quality ground 
stations can be potentially acquired real-time and used to infer ground level concentrations 
of various air pollutants from Sentinel 5p. On the other hand, Pilot 4 does not have in-situ 
data available but requires only the inference of ground level NO2 concentrations at the 
spatial resolution of 1 km. The development of this tool runs in parallel with the activities of 
the Pilots (WP5) in order to ensure the proper integration with the available in-situ data. 

Several types of methods are going to be developed to fulfil the requirements of both 
pilots. ML-based methods [36] can combine in-situ ground measurements with regression 
models to derive detailed information about the spatial distribution of air pollutants. DL-
based algorithms [37], [38] trained with a large number of in-situ measurements collected 
from AirBASE (Air Quality e-Reporting data repositories maintained by the European 
Environmental Agency - EEA) can also be applied when in-situ measurements are not 
available. Additionally, model-based methods [39], [40] will also be tested that can infer 
ground-level concentrations from satellite data by using a chemical transport model instead 
of in-situ measurements. 
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Appendix A. Sentinel 2 SR Training Dataset 
 

Training Dataset 
 

1. S2A_MSIL2A_20210314T032541_N0214_R018_T47NQF_20210314T071359.zip 
2. S2A_MSIL2A_20210419T052641_N0300_R105_T43QDV_20210422T110554.zip 
3. S2A_MSIL2A_20210725T021351_N0301_R060_T51NYH_20210725T062917.zip 
4. S2A_MSIL2A_20210729T031541_N0301_R118_T48NTF_20210730T164044.zip 
5. S2A_MSIL2A_20210930T082741_N0301_R021_T37TCN_20210930T114832.zip 
6. S2A_MSIL2A_20211001T013721_N0301_R031_T52KEG_20211001T034715.zip 
7. S2A_MSIL2A_20211001T162111_N0301_R040_T17TLH_20211001T210728.zip 
8. S2A_MSIL2A_20211005T023551_N0301_R089_T51RTP_20211005T053933.zip 
9. S2A_MSIL2A_20211005T092031_N0301_R093_T34SEG_20211005T122518.zip 
10. S2A_MSIL2A_20211005T092031_N0301_R093_T35TLM_20211005T122518.zip 
11. S2A_MSIL2A_20211005T143731_N0301_R096_T19HCC_20211005T183922.zip 
12. S2A_MSIL2A_20211007T151711_N0301_R125_T19PCN_20211007T171210.zip 
13. S2A_MSIL2A_20211008T060741_N0301_R134_T42SVG_20211008T081424.zip 
14. S2A_MSIL2A_20211009T053731_N0301_R005_T44UPG_20211009T081123.zip 
15. S2A_MSIL2A_20211009T085901_N0301_R007_T36UWE_20211009T120451.zip 
16. S2A_MSIL2A_20211009T103941_N0301_R008_T31UGU_20211009T134536.zip 
17. S2A_MSIL2A_20211010T071211_N0301_R020_T38KPG_20211010T092728.zip 
18. S2A_MSIL2A_20211010T100941_N0301_R022_T33UVR_20211010T115015.zip 
19. S2A_MSIL2A_20211013T083921_N0301_R064_T36RTV_20211013T113537.zip 
20. S2A_MSIL2A_20211013T101951_N0301_R065_T32TNR_20211013T132717.zip 
21. S2A_MSIL2A_20211013T184331_N0301_R070_T12UVF_20211013T213944.zip 
22. S2B_MSIL2A_20210727T032539_N0301_R018_T48QWH_20210727T064635.zip 
23. S2B_MSIL2A_20210731T050609_N0301_R076_T44NNP_20210731T070112.zip 
24. S2B_MSIL2A_20210901T141049_N0301_R110_T19FCC_20210901T183101.zip 
25. S2B_MSIL2A_20210902T221559_N0301_R129_T60HUB_20210902T235008.zip 
26. S2B_MSIL2A_20210907T040539_N0301_R047_T47SNB_20210907T073543.zip 
27. S2B_MSIL2A_20210924T190029_N0301_R013_T10TEQ_20210924T215332.zip 
28. S2B_MSIL2A_20211001T102739_N0301_R108_T32TMT_20211001T132709.zip 
29. S2B_MSIL2A_20211003T161019_N0301_R140_T18UUC_20211003T210214.zip 
30. S2B_MSIL2A_20211004T172059_N0301_R012_T14TPM_20211006T162515.zip 
31. S2B_MSIL2A_20211006T000239_N0301_R030_T56HKH_20211006T014333.zip 
32. S2B_MSIL2A_20211006T112119_N0301_R037_T29SNC_20211006T132214.zip 
33. S2B_MSIL2A_20211008T003709_N0301_R059_T54HUG_20211008T023756.zip 
34. S2B_MSIL2A_20211008T140059_N0301_R067_T21LYJ_20211008T163719.zip 
35. S2B_MSIL2A_20211008T170119_N0301_R069_T14RNN_20211008T211421.zip 
36. S2B_MSIL2A_20211008T170119_N0301_R069_T14RQV_20211008T211421.zip 

 
Validation Dataset 
 

1. S2B_MSIL2A_20211009T095029_N0301_R079_T34UCV_20211009T120840.zip 
2. S2B_MSIL2A_20211010T092029_N0301_R093_T33QYE_20211010T112716.zip 
3. S2B_MSIL2A_20211010T105859_N0301_R094_T29PLM_20211010T141305.zip 
4. S2B_MSIL2A_20211010T105859_N0301_R094_T30TXQ_20211010T123844.zip 
5. S2B_MSIL2A_20211011T070819_N0301_R106_T39RVJ_20211011T095944.zip 
6. S2B_MSIL2A_20211011T171139_N0301_R112_T14SNB_20211011T210903.zip 
7. S2B_MSIL2A_20211011T185319_N0301_R113_T10SFG_20211011T215018.zip 
8. S2B_MSIL2A_20211013T074849_N0301_R135_T37QED_20211013T101008.zip 
9. S2B_MSIL2A_20211013T110919_N0301_R137_T30SUJ_20211013T125854.zip 
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Test Dataset 
 

1. S2A_MSIL2A_20210910T101031_N0301_R022_T35WMP_20210910T114151.zip 
2. S2B_MSIL2A_20210815T103629_N0301_R008_T31SDD_20210815T134410.zip 
3. S2B_MSIL2A_20210907T104619_N0301_R051_T31UFT_20210907T144922.zip 
4. S2B_MSIL2A_20210926T094029_N0301_R036_T34UFG_20210926T110446.zip 
5. S2B_MSIL2A_20210927T090659_N0301_R050_T35SKC_20210928T150645.zip 

 
 
 
 
 
 
 
 
 
 
 
 
 


