

Signatures-based appraisal of global rainfall datasets to capture hydrological trends in a mesoscale catchment

M. Hairs Ali, Markus Hrachowitz, Ioana Popescu and Andreja Jonoski IHE Delft, Institute for Water Education & TU Delft, Netherlands EGU24 | HS 6.8 abstract-8064 | 18 April 2024

M. Haris Ali , h.ali@un-ihe.org

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101003518

Introduction and background

Model

Revealing the role of GEOSS for building climate change adaptation & mitigation applications.

Climate change

Nature based solutions

Hydrological model

Study area:

- Aa of Weerijs Catchment
- Source: Brecht, Belgium
- Outlet: Breda,
 Netherlands
- Total Area: 346 km²
 Netherlands: 147
 km²

Belgium: 199 km²

Precipitation		Datatype	Hz. Coverage	Hz. Resolution	Temporal Coverage	Temporal Resolution
1	MSWEP	Gridded	Global	0.1° x 0.1°	1979 - present	Daily
2	IMERG Final	Gridded	Global	0.1° x 0.1°	2000 – present	Daily
3	ERA5 land	Gridded	Global	0.1° x 0.1°	1996 – present	Hourly
4	E-OBS	Gridded	Europe	0.1° x 0.1°	1950 - present	Daily

Comparison with gauge data

Model simulation performance based on NSE

5170

5165

Model simulation performance based on ${\sf R}$

Research Questions:

- Does the performance of rainfall datasets, as evaluated by rain gauge data, correlate with their accuracy in simulating hydrological variables (discharge and groundwater)?
- How does the variation in evaluation criteria/metrics influence perceptions regarding the performance quality of rainfall datasets.

Methodology:

Evaluation of outputs 1. Time series metrics only

- 2. Hydrological signatures only
- Combine TS metrics and hydrological signatures

Metrics for direct evaluation of rainfall datasets with gauge data (16)

Rainfall time series (R)					
Probability of detection	M _{POD}				
False alarm ratio	M _{FAR}				
Equitable threat score	M _{ETS}				
Frequency bias	M _{FB}				
Nash and Sutcliffe (NSE)	M _{NS,R}				
Log NSE	M _{NS,} log(R)				
Mean absolute error (MAE)	M _{MAE, R}				
Correlation coefficient (R)	M _{R, R}				
Total rainfall on very wet days R95pt0t	M _{R95pt0t}				
Total rainfall on slightly wet days R05pt0t	M _{R05pt0t}				
Longest consecutive dry days	M _{CDD}				
Longest consecutive wet days	M _{CWD}				

Rainfall duration curve (RDC	Rainfall duration curve (RDC)					
Nash and Sutcliffe (NSE)	M _{NS,RD} c					
Log NSE	M _{NS,LO} G(RDC)					
Mean absolute error (MAE)	M _{MAE,} RDC					
Correlation coefficient (R)	$M_{R,RDC}$					
For the metrics which are represented by single values:						
$\bullet M = \left 1 - \frac{X_{\rm sim}}{X_{obs}} \right $						
(Euser et a	al., 2013)					

Metrics for evaluation of time series of output variables (10)

I I

I.

Discharge time series (Q)					
Kling Gupta efficiency	M _{KGE,Q}				
Nash Sutcliffe (NSE)	M _{NS,Q}				
Log NSE	M _{NS,log} (Q)				
Mean absolute error (MAE)	M _{MAE,} Q				
Correlation coefficient (R)	M _{R,Q}				
Groundwater levels time series (G)					
Kling Gupta efficiency (KGE)	M _{KGE,G}				
Nash Sutcliffe (NSE)	M _{NS,G}				
Log NSE	M _{NS,log} (G)				
Mean absolute error (MAE)	M _{MAE,G}				
Correlation coefficient (R)	M _{R,G}				

Hydrological signatures with corresponding metrics for evaluation of output variables (25)

Flow duration curve (FDC)						
Nash and Sutcliffe (NSE)	M _{NS,FDC}					
Log NSE	M _{NS,log(FDC)}					
Mean absolute error (MAE)	M _{MAE,FDC}					
Correlation coefficient (R)	M _{R,FDC}					
FDC high flow segment volume (hfv)	M _{FDC,hfv}					
FDC mid flow segment slope (mfs)	M _{FDC,mfs}					
Base flow index (BFI)	M _{BFI}					
Runoff ratio (RR)	M _{RR}					
Streamflow elasticity (SE)	M _{SE}					
Autocorrelation lag by 1 day(1-lag)	M _{1-lag}					
Rising limb density (month ⁻¹ , RLD)	M _{RLD}					

*Base flow index (BFI) and Runoff ratio (RR) are	9
only calculated for discharge at outlet.	

15-day RR NSE	M _{NS,15-RR}					
15-day RR Log NSE	M _{NS, log(15-RR)}					
15-day RR MAE	M _{MAE, 15-RR}					
15-day RR R	M _{R, 15-RR}					
Groundwater duration cu	Groundwater duration curve (GDC)					
Nash and Sutcliffe (NSE)	M _{NS,GDC}					
Log NSE	M _{NS,log(GDC)}					
Mean absolute error (MAE)	M _{MAE, GDC}					
Correlation coefficient (R)	M _{R,GDC}					

Discharge statistics					
Mean discharge	M _{Q,mean}				
Mean log-transformed discharge	M _{mean,log(Q)}				
Median discharge	M _{Q,mdn}				
Discharge variance	M _{Q,v}				
Variance of log- transformed discharge	M _{v,log(Q)}				
Peak discharge	M _{Q,peak}				

Overall performance

$$DE = \sqrt{\frac{\sum_{i=1}^{N} (P - Mi)^2}{N}}$$

P: Value for perfect model; N: total no. of metrics

(Hrachowitz et al., 2014)

Results:

M. Haris Ali , h.ali@un-ihe.org

10

DE

Rainfall		Model output	Time se	ries only	Hydro signatu	logical re only	Time ser hydrol signat	ies plus ogical tures
1 st	2 nd		1 st	2 nd	1 st	2 nd	1 st	2 nd
		Discharge	E-OBS	MSWEP	MSWEP	ERA5- Land	MSWEP	ERA5- Land
		Ground water	E-OBS	IMERG Final	E-OBS	MSWEP	E-OBS	IMERG Final
E-OBS	MSWEP	Overall	E-OBS	MSWEP	MSWEP	ERA5- Land	MSWEP	ERA5- Land

Results:

- There can be **34.36 billion** unique combinations considering all 35 metrics
- Yet, considering 1 to 8 metrics in the group of 35, we have tested **32.27 million** unique combinations

Conclusions:

- Does the performance of rainfall datasets, as evaluated by rain gauge data, correlate with their accuracy in simulating hydrological variables (discharge and groundwater)?
 - Rainfall dataset evaluation with rain gauge do not necessarily correlate with its performance in simulating variables.

Rainfall		Model	Rank		
1 st	2 nd	output	1 st	2 nd	
	0	Discharge	MSWEP	ERA5-Land	
E-OBS	MSWEI	Ground water	E-OBS	IMERG Final	
		Overall	MSWEP	ERA5-Land	

How does the variation in evaluation criteria and metrics influence perceptions regarding the

performance quality of rainfall datasets.

- Dataset performance assessment varies based on evaluation criteria.
- Careful evaluation metrics selection is crucial, considering specific research needs and geographical context of study area.

Thankyou

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101003518

M. Haris Ali , h.ali@un-ihe.org